Phylogenetic Network for European mtDNA

aa t (HVS-I) ft . <u>.</u> Т , **!** Ż f ţ a a a ! a a f (DNA. P) at t., . f 12 ţf. ď. а L. ^¹₹DNA_∠ 1 , 12,2 1 fá, ₹a 1 *†***DNA** ** ft ı. a a á f ZDNA f a.W 121 E ۱., а , ft f 1 ι D ď. а а a .* F ? , 71 , J 1 ! a!! **VDNA** ţ a 11 .Wfı ţ at ta f 297 a.a 1 F ď. a Ļ ţ. a 9-· / £, ţ t_ **΄.** Τ D **t** 104 a.a ď. **у** у а a ,a , ,_\; a .It t R ., 1 a. a -, a . N! RNA a RNA a 6%, a t. – a . a'. а もさいたい しょき t 22% ft at t 1 ď a HVS-I. T а t 1 2 t <u>, t</u> J'DNA a a a . P と, と ď а a , at J **VDNA** 2. 21 **t** a ty , f fi t' , a Ļ a a ff t a' 1. a. 1 **a** . Ľ. . a - a' . а

Introduction

M \cdot = e e i \cdot_{a} = e \cdot_{a} DNA \cdot_{a} e bee b e \cdot_{a} e Ge ce \cdot_{a} b i i e \cdot_{a} e \cdot_{a} b be e e \cdot_{a} (H \cdot_{a}) f e c \cdot_{a} = e i_{1} (i c \cdot_{a} e \cdot_{a} = 1998; M \cdot_{a} °.ar h e a 🛶 1999). B a ea al e Gi le Goi Gi Te Go I Gi i a ea IH -Ic - e, e '↓ e e e / f 9 e. /e 🔬 e elca a a e, 1 Ģ e Gojec e · 2 9 ---e l e a 1 a i 🖌 c . Ti r le ie e e e GGe lea a-e 2 9 9 6 m e i e -Gi -6 1 1c ec 2 a le bee Ge FL i ec i DNA a. - G ^se, e еi i e a - 1996). Ģ e be e i EG e Gi 6 be Go G DNA a ^{'''}Κ, J, ^a Τ Ε<u></u>... ſĢ ₩., Fin a fin a fin the f

eci...e Dece be 28, 2000; a cce e f , Goia i A i_3, 2001; eec ia , Goil e M. 10, 2001. A e f c e. e ce. e i : D.K. i M i aa, i. ...e i fOGG Dea e f NeG ...O. B 5000, FIN-90014, i.e i f OGG OGG H ...E-ai-ai.aa @ GG. © 2001 b e A eia de f HG a Ge eic. A i e e.e. 0002-9297/2001/6806-0019\$02.00

ha. 1 e.e., i ce G Goc G e eſ i^ge^gi a ve bee ian , ja Ģ ۶. پې Ср іг i e e bee, 1be Gbcz -2 l e a

Table 1		
Samples in the	Study	Population

	NO. OF AM LE				
Ha log o $\operatorname{Defini}_{\Sigma}$ ion	T a - e Ge ce ^s				
H: -7025AluI, -10394DdeI	188 31				
: -					

Fi in

N С В С R DL

i certe, e.i. G e bai e f EG, e e teH -I, lec i - e e a c a e il la b e le a i i le D, (. 2). Ne ee, c Ge f a cla. -G ea e a le le eec bie le e ea - - e i cG i e e e e le e.e., ibeb, Gi e.e. b.c. Gi i le e fe Ge a, e. Goc Ge c Gebec e _ i e i e i e D-_, e a=, ii _

С R Н -, G et la a ea i f 1:31. M f le -G CG e i iffee a. - G O - (9.5%) f le i e i le c i

Discussion

DNA P Ν

C . ee e Ge ce f le G DNA a_{12} e jG be G e e e (F i_{12} e 2000; I a e 2000; E e a 2001). I le, ee a ice, e a e e e i e le DNA e Ge cef 121 F a afe c , e e i G ece a (F i_{12} M i a 2001: F i_{12} e a e be f c e e i G ece a (\overline{H} i a Mai aa 2001; \overline{H} i e a i e), e e e be c Gc a e e i c e b e c e DNA e Ge ce f 192 \overline{H} , a i i e e e f Ga DNA, e Ge ce e e b a e f a le DNA a Ge ce e e b a e f a le C Ge Ce i Ge a e (\overline{G} a e f e e i c Ge Ce i Ge a e (\overline{G} a e f G e e la le \overline{H} a e Gie i EG e (\overline{a} i \overline{G} e e la le \overline{H} a e Gie i EG e (\overline{a} i DNA i e e be e e e \overline{H} i e EG e i i i , G e i la le \overline{H} i e e e e EG e i e c i a e (\overline{a} i e i a e \overline{H} i e e e EG, a La e (i i e 1988; a i i

Figure 2 — e e i c e f DNA, b e avisit i le D , e Ge ce. e G G i DNA f a Afie i i G (I a e 2 2000; Ge B acce i G be AF346980). E -e i i e 303, 311, 16519 e e i c G e i e e i = i e i ; e e i ; e = b c G e i . T e G e ci i i e e i e e G e e G e i e . F f G e i f a i , e e e e G e e G e i e . F f G e i f a i , e e e e G e e G e i e . F f G e i f a i , e e e e G e e G e e G e e . F f G e e i f a i , e e e e e G e e G e e . F f G e e i f a i , e e e e e G e e G e e . F f G e e i f a i , e e e e e G e e . F f G e e i f a i , e e e e e G e e G e e . F f G e e i f a i , e e f e e e e G e e . F f G e e i f a i , e e f e e e e G e e . F f G e e i f a i , e e f e e e e e f e . F f g e e i f a i , e e f e e e e e f e . F f g e e i f a i , e e f e e e e e f e . F f g e e i f a e . F f g e e i f a e . F f g e e i f a e . F f g e e i f a e . F f g e e i f a e . F f g e e i f a e . F f g e e i f a e . F f g e e i f a e . F f g e e i f a e . F f g e e . F f g e e i f a e . F f g e . F f g e .

Fiineana ja i i EG. & DNA

Table 3

Parallel Mutations Detected in the Coding Region of mtDNA in 192 Finnish Samples

		Amino Acid	Ha log o 2						
Ο Ι _Γ ΙΟΝ	N GENE $B_{\tau} I_{\tau}$ ION	Н	K T	J	I #	Ζ			

	N CLEO IDE	HA LOG O									
ο į _ς ion	CHANGE	Н			К	τ.	J		Ι	×	Ζ
16051	A→G	_	_	2	_	_	_	_	_	_	_
16093	–→C	_	_	+	+	_	_	_	_	_	-
16129	G→A	_	_	+	_	_	_	_	+	_	+
16145	G→A	_	_	_	_	_	+	_	+	_	_
16146	A→G	_	_	+	_	+	_	_	_	_	_
16172	_→C	_	_	_	_	+	+	_	+	_	_
16182	Ă→C	_	_	_	_	2	_	_	_	_	_
16183	A→C	_	_	+	_	2	_	_	_	+	_
16186	C→_	_	_	_	_	+	2	_	_	_	_
16189	_→c	_	_	4	_	2	+	_	_	+	_
16192	C→	_	_	3	_	_	+	_	_	_	_
16223 ^b	C→T.	_	_	+	_	+	_	+	+	+	+
16224	→C	_	_	_	+	_	_	_	_	_	+
162.56	Č→	_	_	+	_	+	_	_	_	_	_
16261	C→ ^T	+	_	_	_	_	+	_	_	_	_
16274	G→Ă	+	_	_	_	_	+	_	_	_	_
16278	C→	_	_	_	_	_	+	_	_	+	_
16292	C→ ^T	_	_	_	_	+	_	+	_	_	_
16294	C→ ^T	_	_	2	_	+	_	_	_	_	_
16298	-jE	_	+	-	_	+	_	_	_	_	+
16304	τ, -C	-		_	_	2	_	_	_	_	_
16304		- -				2					
16311	\overline{L}	_	_	- -	Ŧ	_	Ŧ	_	Ŧ	_	_
16362		_	2	2	_	_	_	_	_	_	_
10550	G-A	_	2		_	_	_	_	т 1	- -	_
/3	A→G	Ŧ	2	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
23 142	A→G	_	3	_	_	_	_	_	_	_	_
145	G→A	_	_	_	_	_	_	+	+	_	_
146	r T	+	_	+	+	_	-	_	_	_	_
150	C, T	_	_	+	_	_	2	_	_	_	-
152	T →C	+	_	+	+	+	+	_	+	_	+
185	G→A	_	_	_	_	_	2	_	_	_	_
188	A→G	_	_	_	_	_	3	_	_	_	_
189	A→G	_	+	_	_	_	+	+	_	_	_
195	τ→C	_	+	+	2	2	2	2	_	+	_
199	T_→C	_	_	_	_	+	_	_	+	_	_
207	G→A	-	+	_	-	-	-	+	+	-	_
217	T_→C	_	_	2	_	_	-	_	_	_	-
227	A→G	_	2	_	_	_	-	+	_	+	-
228	G→A	—	—	-	_	-	+	—	_	_	_
248	"e-A	-	-	+	-	_	-	-	-	-	+
295	C→	-	-	_	-	_	+	-	+	-	-
311	C→∽	2	+	_	-	+	+	-	+	-	-
322	G→Ă	—	—	-	_	-	—	+	+	_	-
462	C→	_	+	-	_	_	+	—	_	_	-
489	–→C	_	_	_	_	_	+	_	_	_	+
497	Ċ→	-	-	-	+	_	-	-	-	-	-
498	C→	-	-	-	+	_	-	-	-	-	-
514	i ĊA	2	_	2	2	+	+	_	_	_	-
568	i CC	-	+	+	-	-	-	-	-	_	_
NO _L e.	rier _ i	Ģ	a-e./e	e	e i	с ₋ G ^e e ^e	i le	a b-e:	16166	A→Gi	1 _a .

Parallel Mutations Detected in the D Loop of mtDNA in 192 Finnish Samples

Table 4

No₁E. _ ! ef _ i G i _ e.e. e e i cG e i ! e a be: 16166A→Gi _ ... _ G H, 16166A→Ci _ ... G I, 16166 e Ai GbcG e 4, 16129G→Ci GbcG e 2, 16183A→Gi _ ... G , 456 e C a 456C→ i _ ... G H, 514i CACA i - G H, 514 e CA i GbcG e 5, 568i C i GbcG e 5, 568i CCCC, 568i CCCCCi _ ... G I. H. e ... i 303a 16519 e e a e cG e . ^a N a i i a be 3. ^b H a e a ce i a _ G I, , *, a Z bG ccG a a a a e G i i ^c H a e a ce i a _ G , K, , J, I, , *, a Z bG ccG a a a a e ... G i i G I. H. e H. Fine and i EG. 6 DNA Gile, ibil fleec bia i la la bee Gee a encei DNA (A a and ea 1999; E e and e a 1999). Lei anie i e i e i e 192 DNA i and e e i b i and Gai a e la and c e Ge ce fleec a

- 1835, 1846
- I a M, Ke e a H, aa b , G = e (2000) Mi-c $\dot{h} = e$ e arbi a \dot{e} i i \dot{e} i GN G G 408:708 713 M G G , ica M, Hice E, ea E, C G i F, GG
- , c i, B .e. i B, c B, i A (1999) lee e i e f e EG i DNA a lei f \tilde{c} = e i e Ge ce FL . A JHG Ge e 64: c =ei 232, 249
- Mei in M, Fi in , Mai an K, E, i^se ce í DNAa^s-i Gebe ee le Fi a^sle an i HG Hee^s (i , e)
- e e G, G i C, De Ciic A, acc e C (1999) NGre i e Gb i Gi a e f a ai i c i e e . J М _Е _____48:427, 434
- ica MB, MGG, A, Be-HJ, e BC (1998) e a. i c i DNAi e e EG.e. A HG Ge e 62:241 260
- a i i A, a e AH, a vel e , B Ge K, Giei C, aa b (1996) a e a e a DNA i e e e a b -e ec i lef G i flepi i Gi c N -Ag c A 93:12035, 12039, i G i , He A, GGC e J, ea K, D -

- e_{-} (2000) le Gi a ei e Ga DNA c_{-} ei A JHG Ge e 66:1599 1609 i A, B e_{-} HJ, D' b L, L le , M a_{-} ,
- T, ei D, e C, F e , a G ML, B .e. i B, c_{12} i (1998) DNA₂ = i e_{12} i e_{12} a j = ea e i i c_{12} i e_{12} i f_{12} e e_{13} i f_{12} e e_{13} i f_{12} e e_{13} i f_{13} e e_{13} e e_{13} i f_{13} e e_{13} e e_{13 e e EG, e. A J HG Ge e 62:1137, 1152
- i A, HG, e K, F₂ G, cd , e ••• M, M e L, c, i, Obi GD, a, a, G, ML, a, c c DC (1996)C, i, c, i, G, i, GD, <math>a, a, G, ML, a, c c DC (1996)C, i, c, i, fEG, a, DNA f, a a a - i fi ce EG, a, G, i, Ge eic 144:1835, 1850i i, i, a, a, G, ML, N, e, i e EK (1988) HG ai c, i, DNA, e i Fi , HG Ge e 80:
- 317, 321
- $E, F e, i c_{a} = M, B = HJ (1997) Mi i f G_{a} e_{a} i i Afig. A J$
- HG Ge e 61:691 704 e e E, c' e e C, e e M, e M, Fe (1994)
- e e E, c' d'e C, e e M, -e M, He' (1994) C ... ie i e e, e Ge, Gi e i f C Ge f i ec e Ge d ... NGCeic Ad e 22:4354 4355 Ze , -1174 1183